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Abstract. The demand for transportation brought about by urban population expansion has been 
increasing in the last few decades, and since the construction of transportation infrastructure is 
becoming highly saturated, it is tougher for regular traffic management measures to effectively ease 
traffic congestion in daily travel. Due to the wide application of deep learning in the field of 
transportation, a great number of deep learning models have been applied to traffic flow prediction 
in a various traffic environments, and short-term traffic flow prediction is undoubtedly among the 
most economical and effective measures to assist traffic management. In this paper, a hybrid neural 
network of KOA-CNN-BiGRU-MultiAttention based on pytorch deep learning framework for short-
term traffic flow prediction is proposed. This model shows significant advantages of high prediction 
accuracy and robustness compared with traditional CNN-BiGRU-Attention prediction model, and its 
rapid response has significant advantages in predicting the characteristics of road network traffic 
flow. 
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1. Introduction 

Considering the current saturation of urban transportation infrastructure, it is increasingly difficult 

for conventional traffic management measures to effectively alleviate congestion during peak hours. 

Short term traffic flow prediction, as a cost-effective and practical solution, plays a crucial role in 

intelligent transportation systems by enabling proactive traffic control, optimizing signal timing, and 

guiding route choices in real time. With the rapid development of deep learning, numerous data-

driven models have been proposed to address the complexity and uncertainty inherent in traffic 

dynamics, offering new possibilities for accurate and timely forecasting. 

Recent research has explored various spatial-temporal modeling strategies for enhancing 

prediction accuracy. Wang et al developed an LSTM-RNN model that reconstructs and strengthens 

time-series input to improve both accuracy and timeliness in short-term forecasting [1]. Feng et al 

introduced a multi-component spatial-temporal graph convolutional network (MCSTGCN) capable 

of capturing temporal dependencies across recent, daily and monthly patterns, thus improving spatial–

temporal correlation learning [2]. Yuan et al proposed a dilation-causal convolutional neural network 

(DCFCN) to expand the receptive field and prevent information leakage, significantly boosting 

computational efficiency [3]. Nisha Singh et al. presented AST-Deep, an attention-based deep 

learning model aimed at improving the accuracy and reliability of short-term traffic flow forecasting, 

which achieves a 1 to 5 % improvement in MAE and RMSE over the best-performing baseline model 

as the prediction horizon increases [4]. Sonia Mrad et al used wavelet transform (WT) to handle with 

the non-stationary characteristics of traffic flow data, which is applied to signal decomposition for 

the elimination of redundant data from input matrices, and has produced lower loss for all step-

horizons analyzed comparing with existing prediction methods [5]. Naheliya Bharti et al applied a 

Chaotic Particle Swarm Optimization (CPSO) technique to a two-layer bidirectional LSTM memory 

network, which significantly accelerates the convergence of the Particle Swarm Optimization (PSO) 

algorithm and improves forecast accuracy of traffic speed [6]. Guowen Dai et al. introduced a 

personalized lightweight federated learning framework (PLFL), which is capable of collaboratively 

training a unified global traffic flow prediction model without compromising the privacy of individual 

datasets [7]. Xiaoqing Wang et al proposed a short-term traffic prediction method based on vehicle 
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trip chain features, which uses a pre-built CNNs-LSTM model to improve prediction accuracy and 

shorten time consumption [8]. In order to solve the challenge posed by the inherent nonlinearity and 

stochasticity of traffic flow prediction, Ali Reza Sattarzadeh et al proposed an attention mechanism 

that uses multi-layered hybrid architectures to extract spatial–temporal and nonlinear characteristics 

[9]. To determine a reasonable spatial-temporal correlation range, Lingjuan Chen et al constructed an 

Inverse Isochrone (ISOv) model that considers the dynamic diffusion time and direction of traffic 

flow, experimental results on a real data set show that the complete model improves prediction 

accuracy by approximately 15% in terms of RMSE compared to existing baseline models [10]. 

Derong Xie et al established a dynamic multivariate partial grey model based on the parametric 

equations of traffic flow, the results reveal that the simulation error of the new model was less than 

6 % [11]. These approaches have collectively laid a foundation for integrating deep learning into real-

time traffic management, although challenges remain in achieving both high prediction accuracy and 

robustness under complex urban conditions. 

Building upon these studies, this work proposes a KOA-CNN-BiGRU-MultiAttention hybrid 

neural network for short-term traffic flow prediction. The model leverages CNN to capture local 

spatial dependencies, BiGRU to learn bidirectional temporal features, and multi-head attention to 

identify key time steps for global temporal re-weighting while maintaining model efficiency. The 

Kepler optimization algorithm is specially employed to automatically search for optimal 

hyperparameters, thus enhancing generalization and stability across diverse traffic scenarios. 

Experimental results on the METR-LA data set demonstrate that the proposed approach achieves 

lower MAE compared with CNN baseline. 

2. Methodology 

2.1. The basic model of KOA-CNN-BiGRU-MultiAttention hybrid neural network 

The proposed model integrates convolutional and recurrent architectures with attention and 

evolutionary optimization. A CNN module first extracts localized spatial-temporal features from 

input traffic sequences, which are later processed by a BiGRU module for capturing bidirectional 

temporal dependencies. A multi-head attention mechanism is applied to highlight critical time steps 

and enhance feature representation. Dropout and fully connected layers are employed for 

regularization and output mapping. The Kepler Optimization Algorithm automatically tunes 

hyperparameters to improve convergence and generalization. This hybrid framework enables robust 

and adaptive traffic prediction. The model structure is shown as Figure 1. 

 

Figure 1. Neural network structure 
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2.2. Model structure and principle  

This study optimizes the traditional CNN-GRU-Attention network by introducing the multiple 

attention mechanism for capturing dynamically weighting of important time steps, in which KOA is 

designed for automatically search for optimal hyperparameters for the model’s higher accuracy and 

robustness, therefore achieving efficient extraction of data features and modeling of spatial-temporal 

relationships. 

2.2.1 CNN for local spatial feature extraction 

To extract local spatial features from the input traffic speed matrix, a 1D convolutional layer is 

employed along the temporal axis. Each input tensor of shape (𝐵 × 𝑁 × 𝑇) (where 𝐵 is the batch 

size, 𝑁 the number of sensors, and 𝑇 the time steps) is first linearly embedded by transformation 

weights suggested by KOA, then reshaped to apply temporal convolution independently for each 

sensor. The convolution operation can be represented as (3). By applying a 1D convolution along the 

temporal axis (4), the output is then transposed back to shape 𝐵 × 𝑁 × 𝑇. 

ΧKOA = Χ ∙ WKOA + bKOA, WKOA ∈ ℝN×N                         (1) 

XCNN−in = permute(XKOA, (0,2,1)) ∈ ℝB×N×T                      (2) 

XCNN = ReLU(Conv1D(XCNN−in)) ∈ ℝB×N×T                      (3) 

2.2.2 Bidirectional GRU for temporal feature learning 

To capture both past and future dependencies in the time series, a bidirectional gated recurrent unit 

layer is used as (4), Dropout regularization is applied to prevent overfitting. This module processes 

the CNN output along the temporal dimension, learning sequential features in both directions. Its 

hidden state size H is also one of the hyperparameters optimized by KOA. 

HGRU = BiGRU(XCNN) ∈ ℝB×N×2H                          (4) 

2.2.3 Multi-head attention for global temporal re-weighting 

To enhance the model’s ability to focus on important time steps and capture global temporal 

relationships, we introduce a Multi-Head Attention mechanism. It computes multiple attention scores 

in parallel and aggregates them to form a contextual representation of each sequence. 

Formally, for query, key, and value matrices 𝑄, 𝐾, 𝑉 derived from GRU outputs: 

Attention(Q, K, V) = Softmax (
QKT

√dk
) V                        (5) 

The final output is aggregated as (6). 

MHA(X) = Concat(head1, head2, . . . , heada)WO                   (6) 

where ℎ is the number of attention heads, and both ℎ and projection matrix dimensions are 

hyperparameters searched by KOA. 

2.2.4 Output layer with residual fusion 

The model prediction is generated using the feature vector at the final time step of attention output, 

added with residual connection from the GRU output, followed by a fully connected output layer as 

(7). This residual fusion enhances gradient flow and prediction stability. 

hfianl = HATTN[: , −1, : ] + HGRU[: , −1, : ], ŷ = hfinal ∙ Wout + bout            (7) 

2.3. Role of Kepler optimization algorithm 

KOA is a physics-inspired metaheuristic algorithm raised by Mohamed et al in 2023. It optimizes 

the objective function by simulating the behavior of planets orbiting stars, so that candidate solutions, 

acting as “planets,” gradually approach the optimal solution, acting as the “star.” n this study, KOA 

is employed to automatically optimize critical hyperparameters of the proposed neural network, 
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which includes learning rate α, CNN kernel size 𝑘, GRU hidden size ℎ, number of attention heads 

𝑎 and dropout rate 𝑑. 

P = {α, k, h, a , d}                                 (8) 

This joint optimization ensures a balanced trade-off between spatial–temporal representation 

capacity and generalization ability. 

2.3.1 Initialization 

Each candidate solution (“planet”) encodes a set of hyperparameters 𝐏𝑖  randomly generated 

within predefined bounds. The position vector 𝐗𝑖 corresponds to the 𝐏𝑖 values, and the velocity 

vector 𝐕𝑖 determines the update step size in the search space. 

2.3.2 Fitness evaluation 

For each planet, the proposed deep model is trained on the training set using its encoded 

hyperparameters. The fitness value 𝑓𝑖 is computed on the validation set, with MAE as the primary 

objective: 

fi =
1

N
∑ (yj − yĵ)

2N
j=1                                 (9) 

Lower MAE values indicate higher fitness, corresponding to greater “mass” in the gravitational 

analogy. 

2.3.3 Gravitational attraction 

The best solution is treated as the "sun," and each planet updates its velocity and position based 

on gravitational forces defined as (10), where G is the gravitational constant (control parameter), mi 

is the mass (fitness) of planet i, m∗  is the mass of the sun, and ||Xi − X∗|| is their Euclidean 

distance in the hyperparameter space. 

Fi∗ = G ∙
mi∙m∗

||Xi−X∗||2                                  (10) 

2.3.4 Velocity and position update 

Vi
t+1 = ωVi

t + βFi∗ + γ ∙ rand()                           (11) 

Xi
t+1 = Xi

t + Vi
t+1                                 (12) 

where ω represents inertia coefficient for balancing exploration and exploitation, β stands for 

gravitational influence scaling factor, and γ for random perturbation coefficient for diversity. 

2.3.5 Local optima avoidance and elite preservation  

To avoid local optima, KOA introduces random orbital perturbations and planet replacement when 

stagnation is detected. The elite preservation strategy ensures that the best-performing planet, which 

refers to the hyperparameter set, is retained and propagated across iterations. 

The KOA search process iterates until a convergence criterion is met. The final “sun” parameter 

set is then used to retrain the proposed model from scratch, ensuring optimal configuration for spatial–

temporal traffic forecasting. This approach automates the traditionally manual hyperparameter tuning 

process, reduces trial-and-error cost, and improves model robustness under varying traffic scenarios. 

3. Experiment results and analysis 

3.1. Data preprocessing and analysis 

This study utilizes the open source METR-LA data set, which contains traffic speed records 

collected from 207 loop detectors at 5-minutes intervals on the highways of Los Angeles between 

March 1st and June 27th in 2017. Web link to this data set is https://github.com/liyaguang/DCRNN. 
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By choosing sensors that capture typical time-varying traffic patterns, peak hours, traffic incidents 

and road congestion can be reflected as shown in Figure 2. Temporal dynamics necessitate the use of 

sequence modeling techniques, which makes recurrent neural networks and attention mechanisms 

essential. To better understand the spatial-temporal structure of the data set, dimensionality reduction 

for sensor feature visualization is applied. Principal component analysis (PCA) linearly projects high-

dimensional series into two dimensions, preserving global variance and highlighting overall traffic 

speed patterns. t-distributed stochastic neighbor embedding (t-SNE) emphasizes local neighborhood 

preservation, clustering sensors with similar dynamics closer together. The combination of PCA and 

t-SNE provides complementary perspectives: The former reveals global variance distribution, while 

the latter uncovers fine-grained local structures. 

  

(a) Traffic speed time series of typical sensors (b) Spatial distribution of total sensors 

  

(c) PCA of sensor feature distribution (d) t-SNE of sensor feature distribution 

Figure 2. Traffic speed data feature visualization 

To standardize the input space and accelerate model convergence, all data is scaled into the range 

[0, 1] using min-max normalization. By drawing the correlation heat map among total sensors, strong 

inter-sensor correlations indicating spatial dependencies can be observed as shown in Figure 3, 

thereby can be used to further illustrate the evolution of traffic flow. This insight justifies the 

integration of CNN and KOA modules in hybrid model to extract meaningful spatial features. 
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Figure 3. Correlation heat map of total 207 sensors 

3.2. Simulation environment configuration 

The experiment of this study is configured as shown in Table.1. The operating system applied in 

this study is Microsoft Windows10 22H2 (19045.5965) system, Pycharm 2025.1.1 version of the 

compiler.In order to apply pytorch framework, version of Python language used for the training is 

3.10.9. 

Table 1. The experimental environment configuration 

Parameter Name Parameter Value 

Operating system Microsoft Windows10 22H2 (19045.5965) 

CPU Intel Core i9-12900KF 

GPU NVIDIA GeForce RTX 2060 

RAM 32 GB 

Compilers Pycharm2025.1.1 64-bit 

Python version 3.10.9 

3.3. Validation object selection and data normalization 

As shown in Figure 4 (a), the raw traffic speed series from a representative sensor illustrates 

obvious temporal variations, which includes morning and evening peak patterns. These dynamics 

underscore the necessity of a temporal model that can capture non-stationary patterns in urban traffic. 

Figure 4 (b) compares the raw and normalized traffic speeds. Min-Max scaling is adopted to 

standardize the input to the range [0, 1], facilitating faster convergence and stability during model 

training. 

  
(a) Traffic speed series of sensor #0 (b) Speed series after normalization 

Figure 4. Validation object selection and data normalization 
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3.4. Train and validation performance 

Mean absolute error (MAE) and root mean square error (RMSE) are used as metrics to evaluate 

model performance. MAE is especially employed as the model loss function, as it directly measures 

the average magnitude of prediction errors without considering their direction, which is shown as 

(13). 

ℒ𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1                               (13) 

The training loss and validation loss over 50 epochs are presented in Figure 5. The training curve 

demonstrates smooth and consistent convergence, while the validation MAE and RMSE decrease 

stably in early epochs before plateauing after approximately 15 epochs. The use of early stopping 

prevents overfitting and reduces unnecessary computation. The relatively low validation metrics 

confirm that the hybrid model generalizes well to irregular traffic sequences. 

 

Figure 5. Model training performance 

3.5. Prediction accuracy on validation set 

To further illustrate the model’s prediction performance, the predicted and true traffic speed values 

over 100 consecutive time steps was compared as shown below. Figure 6 (a) shows that the prediction 

line closely follows the ground truth, including during rapid rises and falls in speed, indicating that 

the model can effectively capture traffic dynamics even under fluctuating conditions. In Figure 6 (b), 

the prediction error distribution demonstrates a near-normal shape centered around zero, with most 

errors within ±5 km/h. This indicates stable model performance without systematic bias, while few 

long-tail deviations suggest challenges in capturing sudden traffic fluctuations such as accidents or 

unexpected congestion. These results demonstrate that the combined use of bidirectional GRU and 

multiple attention mechanism enables the model to respond to both short-term shifts and global 

temporal context, while CNN helps model spatial continuity. 

  
(a) Comparison between prediction and truth (b) Error distribution of prediction 

Figure 6. Prediction accuracy 



Highlights in Science, Engineering and Technology AETS 2025 

Volume 158 (2025)  

 

115 

3.6. Model performance comparison 

3.6.1 Parameter settings of KOA 

This study uses KOA algorithm to optimize the hyperparameters of CNN-BiGRU-MultiAttention 

model, which include learning rate, number of convolutional kernels and number of BiGRU hidden 

layer nodes. The MAE of the validation set is used as the KOA fitness function to simulate the motion 

patterns of the sun and planets, dynamically adjusting the population positions to find the optimal 

solution. 

The KOA algorithm is initialized with a population size of 10 and an iteration count of 50. The 

initial values for learning rate, number of convolutional kernels, number of hidden layer nodes, 

eccentricity, and orbital period are shown in Table 2. The eccentricity in the KOA algorithm controls 

the shape of the orbit, influencing the search path of planetary motion; the orbital period controls the 

speed of planetary motion, affecting the frequency and range of exploration. 

Table 2. Initialization of population, eccentricity and orbital period in KOA 

Initial 

Learning 

Rate 

Number of Initial Convolution 

Kernels 

Number of Hidden 

Layer Nodes 

Initial 

Eccentricity 

Initial 

Orbital 

Period 

0.408 9 96 0.637 0.075 

0.287 32 40 0.362 0.506 

0.526 42 96 0.015 1.052 

0.686 63 80 0.542 0.971 

0.814 47 8 0.318 0.077 

0.904 32 16 0.145 0.435 

0.835 18 24 0.549 0.553 

0.449 45 120 0.187 0.267 

0.833 35 80 0.399 0.009 

0.835 32 96 0.240 0.641 

 

A smaller TC enhances the ability of global search, while a larger TC is beneficial for reinforcing 

local search. 𝑀 is the gravitational strength control factor, influencing the adjustment of gravitational 

strength, individual position updates, and search range control. As 𝑀 decays, the search range of 

individuals gradually narrows, and the algorithm transitions from global search to local search. 𝑀0 

and 𝜆 control the decay rate of 𝑀, thereby influencing the balance of the search process. Specifically, 

TC controls the periodic changes in gravity, thereby affecting the update of planetary positions and 

exploration speed; 𝑀0 controls the gravitational strength between planets; 𝜆 determines the decay 

rate of gravity, affecting the exploration capability of planets during the search process. Therefore, the 

above control parameters are critical in the KOA algorithm that influence the search process and 

convergence speed. To further analyze the specific impact of these control parameters on the 

optimization performance of the KOA algorithm, Table 3 below shows the fitness results of the KOA 

algorithm under several different combinations of control parameters. 

Table 3. Impact of different control parameter combinations on fitness in KOA algorithm 

Combination TC 𝑀0 𝜆 Best Fitness 

Combination_01 0.1 0.05 1 0.0659 

Combination_02 1 0.05 8 0.0621 

Combination_03 3 0.1 15 0.0631 

Combination_04 0.1 10 100 0.1085 

Combination_05 3 10 100 0.0750 

Combination_06 10 0.1 100 0.0689 

 

Table 3 shows six different combinations of control parameters and their corresponding optimal 

fitness values. As shown in the table, smaller TC values such as 0.1, 1 and 3, accelerate the 
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convergence speed of the planet and enhance the global search capability, but may lead to premature 

convergence to local optima in some cases. In contrast, larger TC value like 10, maintains a broader 

exploration range for the planets, helping to avoid premature convergence, but may result in reduced 

search efficiency. Larger 𝑀0 values like 10 enhances the gravitational forces between planets and 

increases interactions, which may lead to premature convergence and confinement to certain solution 

neighborhoods. Smaller 𝑀0  values like 0.05 and 0.1 weaken gravitational forces, increasing 

planetary freedom and maintaining a broader search range. Larger 𝜆 value like 100 accelerates 

gravitational decay, causing planets to converge faster and risk getting stuck in local optima, while 

smaller 𝜆 values such as 1, 8 and 15, slow down gravitational decay, helping to enhance search 

persistence and balance the capabilities of global and local search. Through comprehensive analysis, 

the optimal KOA control parameter combination in this model is Control Parameter Combination_02, 

i.e., TC=1, 𝑀0=0.05, 𝜆=8. 

3.6.2 Comparison with baseline model 

To evaluate the effectiveness of each component in the proposed hybrid architecture, comparison 

of the hybrid model against simplified baseline models that use single CNN, single GRU and CNN-

BiGRU-Attention for spatial-temporal modeling are designed. These baseline models share the same 

input-output structure and are trained under identical hyperparameters (window size, batch size, 

learning rate, epochs) to ensure fairness of, relative training results are shown in Figure 7. 

  
(a) Prediction accuracy of CNN (b) Validation metrics of CNN 

  
(c) Prediction accuracy of GRU (d) Validation metrics of GRU 

  
(e) Prediction accuracy of CNN-BiGRU-

Attention 

(f) Validation metrics of CNN-BiGRU-

Attention 

Figure 7. Metrics comparison between baseline models 

The results of both models on the METR-LA validation set are presented in Table 4. The evaluation 

metrics of MAE and RMSE indicate a significant fluctuation compared with the hybrid model raised 

in this study, proving its higher accuracy in predicting short term traffic flow.The results in Table 4 

demonstrate that the proposed model achieves the lowest MAE (4.8790) and RMSE (8.8356), 
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outperforming all baselines. Compared with the CNN-BiGRU-Attention model, our approach reduces 

MAE by 7.8% and RMSE by 10.8%, highlighting the contribution of KOA-based hyperparameter 

optimization and the multi-head attention mechanism. 

In terms of computational efficiency, the baseline CNN-BiGRU-Attention requires 5.3M 

parameters, while our optimized hybrid reduces this to 4.7M through KOA-driven search, yielding a 

more compact architecture with improved accuracy. This confirms that the proposed model does not 

merely improve prediction precision, but also enhances parameter efficiency. 

Table 4. Training metrics of proposed and baseline model 

Model Component MAE RMSE Train Loss 

Single CNN 6.5202 11.3245 0.1892 

Single GRU 5.3782 9.0673 0.1207 

CNN-BiGRU-Attention 5.2908 9.9107 0.1039 

KOA-CNN-BiGRU-MultiAttention 4.8790 8.8356 0.0524 

4. Conclusions 

This study proposes a structurally optimized hybrid neural network for short-term traffic flow 

prediction, specifically targeting the complex and dynamic nature of urban traffic flow speed. By 

integrating spatial feature extraction via CNN, temporal sequence modeling through bidirectional 

GRU, and dynamic temporal weighting using multi-head attention, the model is capable of accurately 

capturing spatial-temporal dependencies in multi-scale. Furthermore, the introduction of Kepler 

optimization algorithm enables automatic configuration of key model parameters, enhancing both 

predictive performance and training efficiency. Multiple experiments on the METR-LA data set 

demonstrate that the proposed model achieves significantly lower MAE compared to a CNN-BiGRU-

Attention baseline model, validating the former’s generalizability and robustness across sensor nodes 

and time horizons. 

Beyond numerical accuracy, the study emphasizes interpretability by incorporating visualizations, 

which includes sensor-level speed trends, spatial variability and inter-sensor correlations, therefore 

offering unique insights into the evolution of traffic flow. Future work will focus on extending model 

settings to multiple tasks and procedures, integrating external factors like weather or events, and 

exploring intercity transfer learning to enhance deployment scalability in real-world intelligent 

transportation systems. 
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